Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
Seidl, R. et al. Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems. Ecography 43, 967–978 (2020).
Patacca, M. et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Chang. Biol. 29, 1359–1376 (2023).
FAO. Forest Products 2022. https://doi.org/10.4060/cc3475m (FAO, 2022).
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
Pugh, T. A. M., Arneth, A., Kautz, M., Poulter, B. & Smith, B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 12, 730–735 (2019).
Mayer, M., Baltensweiler, A., James, J., Rigling, A. & Hagedorn, F. A global synthesis and conceptualization of the magnitude and duration of soil carbon losses in response to forest disturbances. Glob. Ecol. Biogeogr. 33, 141–150 (2024).
Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).
Palahí, M. et al. Concerns about reported harvests in European forests. Nature 592, E15–E17 (2021).
Wernick, I. K. et al. Quantifying forest change in the European Union. Nature 592, E13–E14 (2021).
Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).
Senf, C. & Seidl, R. Storm and fire disturbances in Europe: distribution and trends. Glob. Chang. Biol. 27, 3605–3619 (2021).
Sebald, J., Senf, C. & Seidl, R. Human or natural? Landscape context improves the attribution of forest disturbances mapped from Landsat in Central Europe. Remote Sens. Environ. 262, 112502 (2021).
Sanginés de Cárcer, P. et al. The management response to wind disturbances in European forests. Curr. For. Reports 7, 167–180 (2021).
Kautz, M., Schopf, R. & Ohser, J. The “sun-effect”: microclimatic alterations predispose forest edges to bark beetle infestations. Eur. J. Res. 132, 453–465 (2013).
Mitchell, S. J. Wind as a natural disturbance agent in forests: a synthesis. Forestry 86, 147–157 (2013).
Bruni, C. et al. Wildfire exposure and risk in pulp paper companies’ plantations under extreme weather conditions: a case study in North-Western Portugal. Int. J. Disaster Risk Reduct. 100, 104064 (2024).
Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).
Schmidt, M., Hanewinkel, M., Kändler, G., Kublin, E. & Kohnle, U. An inventory-based approach for modeling single-tree storm damage—experiences with the winter storm of 1999 in southwestern Germany. Can. J. Res. 40, 1636–1652 (2010).
Pausas, J. G. & Ribeiro, E. The global fire-productivity relationship. Glob. Ecol. Biogeogr. 22, 728–736 (2013).
Pasztor, F., Matulla, C., Rammer, W. & Lexer, M. J. Drivers of the bark beetle disturbance regime in Alpine forests in Austria. Ecol. Manag. 318, 349–358 (2014).
Ferraro, P. J., Sanchirico, J. N. & Smith, M. D. Causal inference in coupled human and natural systems. Proc. Natl Acad. Sci. USA 116, 5311–5318 (2019).
Simard, M., Romme, W. H., Griffin, J. M. & Turner, M. G. Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecol. Monogr. 81, 3–24 (2011).
Buma, B. Disturbance interactions: characterization, prediction, and the potential for cascading effects. Ecosphere 6, art70 (2015).
Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).
Liu, J. et al. Coupled human and natural systems: the evolution and applications of an integrated framework. Ambio 50, 1778–1783 (2021).
Hanewinkel, M., Hummel, S. & Albrecht, A. Assessing natural hazards in forestry for risk management: a review. Eur. J. Res. 130, 329–351 (2011).
Forest Europe. The State of Europe’s Forests 2020 (Ministerial Conference on the Protection of Forests in Europe, 2020).
Nikinmaa, L. et al. Reviewing the use of resilience concepts in forest sciences. Curr. Rep. 6, 61–80 (2020).
Triviño, M. et al. Enhancing resilience of boreal forests through management under global change: a review. Curr. Landsc. Ecol. Rep. 8, 103–118 (2023).
Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 1099–1103 (2020).
De Frenne, P. et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Chang. Biol. 27, 2279–2297 (2021).
Larsen, J. B. et al. Closer-to-nature Forest Management (European Forest Institute, 2022).
Senf, C. & Seidl, R. Post‐disturbance canopy recovery and the resilience of Europe’s forests. Glob. Ecol. Biogeogr. 31, 25–36 (2022).
Senf, C. & Seidl, R. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 18, 5223–5230 (2021).
Forzieri, G. et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 12, 257–276 (2020).
Hlásny, T. et al. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr. Rep. 7, 138–165 (2021).
Hlásny, T. et al. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. Ecol. Manag. 490, 119075 (2021).
Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Roberts, D. R. et al. Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
JRC. Salvage loggings. European Commission, Joint Research Centre. http://data.europa.eu/89h/2100b612-a4b0-4897-829b-72b7b1e5782c (2021).
Hothorn, T., Hornik, K., van de Wiel, M. A. & Zeileis, A. Implementing a class of permutation tests: the coin package. J. Stat. Softw. 28, 1–23 (2008).
R. Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).